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A great part of software development involves conceptualizing or communicating the underlying procedures
and logic that needs to be expressed in programs. One major difficulty of programming is turning concept into
code, especially when dealing with the APIs of unfamiliar libraries. Recently, there has been a proliferation of
machine learning methods for code generation and retrieval from natural language queries, but these have
primarily been evaluated purely based on retrieval accuracy or overlap of generated code with developer-
written code, and the actual effect of these methods on the developer workflow is surprisingly unattested.
In this paper, we perform the first comprehensive investigation of the promise and challenges of using such
technology inside the PyCharm IDE, asking “at the current state of technology does it improve developer
productivity or accuracy, how does it affect the developer experience, and what are the remaining gaps and
challenges?” To facilitate the study, we first develop a plugin for the PyCharm IDE that implements a hybrid
of code generation and code retrieval functionality, and orchestrate virtual environments to enable collection
of many user events (e.g. web browsing, keystrokes, fine-grained code edits). We ask developers with various
backgrounds to complete 7 varieties of 14 Python programming tasks ranging from basic file manipulation to
machine learning or data visualization, with or without the help of the plugin. While qualitative surveys of
developer experience are largely positive, quantitative results with regards to increased productivity, code
quality, or program correctness are inconclusive. Further analysis identifies several pain points that could
improve the effectiveness of future machine learning based code generation/retrieval developer assistants,
and demonstrates when developers prefer code generation over code retrieval and vice versa. We release all
data and software to pave the road for future empirical studies on this topic, as well as development of better
code generation models.

CCS Concepts: « Software and its engineering — Software notations and tools; Automatic program-
ming; « Human-centered computing — Natural language interfaces.

Additional Key Words and Phrases: natural language programming assistant, code generation, code retrieval,
empirical study

ACM Reference Format:

Frank F. Xu, Bogdan Vasilescu, and Graham Neubig. 2021. In-IDE Code Generation from Natural Language:
Promise and Challenges. ACM Trans. Softw. Eng. Methodol. 37, 4, Article 111 (August 2021), 47 pages. https:
//doi.org/10.1145/3487569

Authors’ addresses: Frank F. Xu, fangzhex@cs.cmu.edu, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA, 15213;
Bogdan Vasilescu, vasilescu@cs.cmu.edu, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA, 15213; Graham
Neubig, gneubig@cs.cmu.edu, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA, 15213.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1049-331X/2021/8-ART111 $15.00

https://doi.org/10.1145/3487569

ACM Trans. Softw. Eng. Methodol., Vol. 37, No. 4, Article 111. Publication date: August 2021.



https://doi.org/10.1145/3487569
https://doi.org/10.1145/3487569
https://doi.org/10.1145/3487569

111:2 Frank F. Xu, Bogdan Vasilescu, and Graham Neubig

1 INTRODUCTION

One of the major hurdles to programming is the time it takes to turn ideas into codd.[All
programmers, especially beginners but even experts, frequently reach points in a program where
they understand conceptually what must be done next, but do not know how to create a concrete
implementation of their idea, or would rather not have to type it in if they can avoid it. The
popularity of the Stack Over ow Q&A website is a great example of this need. Indeed, developers
ask questions about how to transform ideas into code all the tismg, How do | check whether a le
exists without exceptions?, How can | merge two Python dictionaries in a single expressiof@ic.
Moreover, this need is likely to continue in the future, as new APIs appear continuously and existing
APIs change in non-backwards compatible ways [80], requiring recurring learning e ort [57, 84].

Despite early skepticism towards the idea of natural language programmit2§,[researchers
now widely agree on a range of scenarios where it can be useful to be able to formulate instructions
using natural language and have the corresponding source code snippets automatically produced.
For example, software developers can save keystrokes or avoid writing dull pieces of 83@&8[

99 115; and non-programmers and practitioners in other elds, who require computation in their
daily work, can get help with creating data manipulation scripts [38, 62].

Given a natural language query carrying the intent of a desired step in a program, there are
two main classes of methods to obtain code implementing this intent, corresponding to two major
research thrusts in this area. On the one hamtbde retrievalechniques aim to search for and
retrieve an existing code fragment in a code base; given the abundance of code snippets online, on
platforms such as Stack Over ow, it is plausible that a lot of the code that one might write, especially
for lower level functionality and API usage primitives, already exists somewhere, therefore the
main challenge is search. On the other harmdde generaticdechniques aim to synthesize code
fragments given natural language descriptions of intent. This is typically a harder challenge than
retrieval and therefore more ambitious, but it may be particularly useful in practice if those exact
target code fragments do not exist anywhere yet and can be generated instead.

The early attempts at general-purpose code generation from natural language date back to the
early to mid 2000s, and resulted in groundbreaking but relatively constrained grammatical and
template-based systems.g, converting English into Javedfd and Python [L13. Recent years have
seen an increase in the scope and diversity of such programming assistance tools, as researchers
have devised code generation techniques that promise to be more exible and expressive using
machine (deep) learning models trained on data from Big Code repositories like GitHub and Stack
Over ow; see Allamanis et al[3] for an excellent survey of such techniques. Code retrieval systems
have also improved dramatically in recent years, thanks to the increasing availability of source code
online and more sophisticated information retrieval and machine learning techniques; perhaps the
most popular current code retrieval system is Microsoft's Bing Developer Assistahg[ which is
an adaptation of the Bing search engine for code.

While both types of methods (generation and retrieval) for producing appropriate code given
natural language intents have received signi cant interest in machine learning circles, there is a
surprising paucity of research using human-centered approacl8&stp evaluate the usefulness
and impact of these methodsithin the software development work on important open question
is to what extent the typically high accuracy scores obtained during automatic evaluations on
benchmark datasets will translate to real-world usage scenarios, involving software developers
completing actual programming tasks. The former does not guarantee the latter. For example,
an empirical study on code migration by Tran et.§110]showed that the BLEUgY accuracy

Lhttps://stackover ow.com/q/82831
2https://stackover ow.com/q/38987
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score commonly used in natural language machine translation has only weak correlation with the
semantic correctness of the translated source code [110].

In this paper, we take one step towards addressing this gap. We implemented two state-of-the-art
systems for natural language to code (NL2Code) generation and retrieval as in-IDE developer
assistants, and carried out a controlled human study with 31 participants assigned to complete
a range of Python programming tasksith and withoutthe use of the two varieties of NL2Code
assistance. Our results reveal that while participants in general enjoyed interacting with our IDE
plugin and the two code generation and retrieval systems, surprisirthire were no statistically
signi cant gains in any measurable outcome when using the plligat is, tasks with code fragments
automatically generated or retrieved using our plugin were, on average, neither completed faster
nor more correctly than tasks where participants did not use any NL2Code assistant. This indicates
that despite impressive improvements in the intrinsic performance of code generation and retrieval
models, there is a clear need to further improve the accuracy of code generation, and we may need
to consider other extrinsic factors (such as providing documentation for the generated code) before
such models can make sizable impact on the developer work ow.

In summary, themain contributions of this paper are: (i) A hybrid code generation and code
retrieval plugin for the Python PyCharm IDE, that takes as input natural language queries. (ii) A
controlled user study with 31 participants observed across 7 types of programming tasks (14 concrete
subtasks). (iii) An analysis of both quantitative and qualitative empirical data collected from the
user study, revealing how developers interact with the NL2Code assistant and the assistant's impact
on developer productivity and code quality. (iv) A comparison of code snippets produced by the two
models, generation versus retrieval. (v) An anonymized dataset of events from our instrumented IDE
and virtual environment, capturing multiple aspects of developers' activity during the programming
tasks, including plugin queries and edits, web browsing activities, and code edits.

2 OVERVIEW OF OUR STUDY

The goal of our research is to elucidate to what extent and in what ways current natural language
programming techniques for code generation and retrieval can be useful within the development
work ow as NL2Code developer assistants. Our main interest is evaluating the usefulness in practice
of state-of-the-art NL2Codgeneratiorsystems, which have been receiving signi cant attention
from researchers in recent years, but have so far only been evaluated on benchmark datasets using
standard NLP metrics. However, as discussed above, code generation and code retrieval are closely
related problems, with increasingly blurred lines between thewg, recent approaches to align
natural language intents with their corresponding code snippets in Stack Over ow for retrieval
purposes 123 use similar deep learning technology as some code generation techniduass |
Therefore, it is important to also consider code retrieval systems when experimenting with and
evaluating code generation systems.

Given this complementarity of the two tasks, we select as a representative example of state-of-
the-art techniques for code generation the semantic parsing approach by Yin and NEL28{ In
short, the approach is based on a tree-based neural network model that encodes natural language
utterances and generates corresponding syntactically correct target code snippets; for example,
the model can generate the Python code snippesort(reverse=True) given the natural
language input sort listx in reverse order. We chose the approach by Yin and NeUki23] over
similar approaches such as those of lyer et[dB] and Agashe et a[1] as it is the most general
purpose and most naturally comparable to code retrieval approaches; see Section 9 for a discussion.
For code retrieval, the closest analogue is Microsoft's proprietary Bing Developer Assistagt [
which takes English queries as input and returns existing matching code fragments from the Web,
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Fig. 1. Overview of our study.

using the Bing search engine. However, given the proprietary nature of this system, we build a
custom Stack Over ow code search engine inspired by it rather than use the system itself.

We then designed and carried out the controlled human study summarized in Figure 1. First, we
implement the two code generation and retrieval techniques as a custom plugin for the PyCharm
IDE, which takes as input natural language text intents and displays as output the corresponding
code snippets generated and retrieved by the respective underlying models. Second, we compile
14 representative Python programming tasks across 7 task categories with varying di culty,
ranging from basic Python to data science topics. Third, we recruit 31 participants with diverse
experience in programming in Python and with the di erent task application domains. Then, using
an instrumented virtual environment and our IDE plugin, we collect quantitative and qualitative
data about task performance and subjective tool use from each participant, as well as over 170
person hours of telemetry data from the instrumented environment.

Finally, we analyze these data to answer three research questions, as follows.

RQ:. How does using a NL2Code developer assistant a ect task completion time and program
correctnessThis research question investigates quantitatively di erences in outcome variables
between tasks completed in the treatment and control conditions. To this end, we use the log data
from our instrumented virtual environment to compute task completion times, and rubric-based
manual scoring of the solutions submitted by study participants to evaluate program correctness.
Then, we use multivariate mixed-e ects regression modeling to analyze the data. We expect that
using the plugin developers can complete tasks faster, without compromising solution quality.

Shttps://www.jetbrains.com/pycharm/
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RQ2. How do users query the NL2Code assistant, and how does that associate with their choice of
generated vs retrieved codEf¥is research question investigates quantitatively three dimensions
of the inputs and outputs of the NL2Code plugin. Again using log data from our instrumented
virtual environment, we rst model how the natural language input queries di er when study
participants favor the code snippets returned by the code generation model over those returned by
the code retrieval model. Second, we evaluate the quality of the natural language queries input by
study participants in terms of their ability to be answerable by an oracle (human expert), which
is also important for the success of NL2Code systems in practice, in addition to the quality of
the underlying code generation or retrieval systems. Third, we study how the length and the
frequency of di erent types of tokens changes after study participants edit the candidate code
shippets returned by the NL2Code plugin, which could indicate ways in which even the chosen
code snippets are still insu cient to address the users' needs.

RQs. How do users perceive the usefulness of the in-IDE NL2Code developer asisiatentiis
research question investigates qualitatively the experience of the study participants interacting
with the NL2Code plugin and underlying code generation and retrieval models.

In the remainder of this paper, Sections 3 4 describe our study setup in detail; then Sections 5 7
present our answers to the research questions; Section 8 discusses implications; and Section 9
discusses related work.

Following best practices for empirical software engineering reseafd[116, we make our
study replicable, publishing our plugin prototype, instrumented virtual environment, data extraction
and analysis scripts, and the obtained anonymized raw data; see the online appendices at https:
/lgithub.com/neulab/tranX-plugin and https://github.com/neulab/tranX-study.

3 NL2CODE IDE PLUGIN DESIGN

We designed and built a joint NL2Code generation and retrieval plugin for PyCharm, a popular
Python IDE. Our plugin is open source and available onlfn&s mentioned above, the plugin takes

as input an English query describing the user's intent, and gives as output a ranked list of the
most relevant code snippets produced by each of the two underlying code generation and retrieval
systems. Using IDE plugins to query Web resources such as Stack Over ow is expected to be less
disruptive of developers' productivity than using an external Web browser, since it reduces context
switching [9, 91]. Moreover, there exist already a number of IDE plugins for Web / Stack Over ow
search and code retrieval], 91, 98 119, therefore the human-computer interaction modality
should feel at least somewhat natural to study participants.

The Underlying Code Generation System. For code generation, we use the model by Xu et al
[117] (available onliné), which is an improved version of the tree-based semantic parsing model by
Yin and Neubid124], further pre-trained on o cial APl documentation in addition to the original
training on Stack Over ow questions and answe¥s.

This model reports state-of-the-art accuracy on the CoNalLa benchmark dataset [122], a bench-
mark dataset of intent/code pairs mined from Stack Over ow and standardly used to evaluate code
generation models. Accuracy is computed using the BLEU sc@® § standard metric used in the
NLP community, that measures the token-level overlap between the generated code and a reference
implementation. As discussed above, the BLEU score (and similar automated metrics) are typically
not su ciently sensitive to small lexical di erences in token sequence that can greatly alter the

4At https://github.com/neulab/tranX-plugin

Shttps://github.com/neulab/external-knowledge-codegen

6\We deployed the model on an internal research server and exposed a HTTP API that the plugin can access; queries are fast
enough for the plugin to be usable in real time.
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Opena le f.txt  in write mode.

3 f=open('fitxt ', "w)

| f=open('fitxt ', 'w)

* with open(‘users.txt”, "a")as f: f.write(username + "\n")

Remove rst column of dataframef.

3 df = df.drop(df.columns[[0]], axis=1)
|  df.drop(df.columns[[0]])

e del df[ ' column_name]

Lower a stringtext and remove non-alphanumeric characters aside from space.

3 resub(r '[Msa zA Z0 9]', " , text).lower().strip()
| re.ssub(r '[Msa zA Z0 9]', " , text)
e resub(r '[Msa zA Z0 9]', " , text).lower().strip()

Table 1. Examples, wheBeis the ground-truth code snippet, is the output from the state-of-the-art code
generation model, and is the first candidate retrieved from Stack Overflow using Bing Search.

semantics of the codelfL(, hence our current human-centered study. Still, qualitatively, it appears
that the model can generate reasonable code fragments given short text inputs, as shown in Table 1.
Note how the model can generate syntactically correct code snippets by construction; demonstrates
ability to identify and incorporate a wide variety of API calls; and also has the ability to copy
important information like string literals and variable names from the input natural language
intent, in contrast to the code retrieval results. When displaying multiple generation results in the
plugin described below, these results are ordered by the conditional probability of the generated
code given the input command.

The Underlying Code Retrieval System. For code retrieval, similarly to a number of recent
works on the subject17, 91, 115, we implement a wrapper around a general-purpose search
engine, speci cally the Bingsearch enginé.The wrapper queries this search engine for relevant
questions on Stack Over oW,the dominant programming Q&A community, and retrieves code
from the retrieved pages. A dedicated search engine already incorporates advanced indexing and
ranking mechanisms in its algorithms, driven by user interaction data, therefore it is preferable to
using the internal Stack Over ow search engine directly [115].

Speci cally, we add the Python pre x to all user queries to con ne the search to the Python
programming language domain, and add site:stackover ow.com to con ne the results to the
Stack Over ow platform. We do not structurally alter the queries otherwiseg, we do not remove
variables referenced therein, if any, although we do strip away grave accents that are part of the
code generation model's syntd®.For the query example mentioned above, the actual query string
for Bing search would become Python reverse a list x site:stackover ow.com . For each Stack

"https://www.bing.com/

8\We chose Bing rather than other alternatives such as Google due to the availability of an easily accessible search API.
Shttps://stackover ow.com/

1010 mitigate concerns that user queries using the speci ed syntax (command form sentences and including variable names)
may adversely a ect the retrieval results, after the full study was complete we modi ed 59 user-issued queries that were
indeed complete sentences with full variable names, converting them into short phrases without variable names and re-ran
the retrieval. We then compared the results and manually annotated the number of times the search engine returned a
result that we judged was su cient to understand how to perform the programming task speci ed by the user's intent. As a
result, the user-written full intent resulted in a su cient answer 34/59 times, and the simpli ed intent without variable
names returned a su cient answer 36/59 times, so it appears that including variable names has a marginal to no e ect on
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(a) ery input interface (b) Code snippet candidates

Fig. 2. Screenshots of the in-IDE plugin taking a natural language query as input and listing code snippet
candidates from both code generation and code retrieval.

(a) Generated code with errors in the context (b) The user fixes the error and uploads

Fig. 3. Screenshots of fixing the small errors in generated code and upload the correct snippet.

Over ow question page retrieved, we then extract the code snippets from the top 3 answers into
a ranked list, sorted descending by upvotes. The code snippet extraction procedure follows Yin
et al [122]for identifying the code part of the answer, based on Stack Over ow-speci ¢ syntax
highlighting and heuristics. When displaying multiple retrieval results, these results are ordered by
the order they appeared in Bing search engine results and the ordering of answers inside SO posts
is done by upvotes.

Table 1 shows a few example outputs. Note how the retrieval results sometimes contain spurious
code, not part of the natural language intent ( rst example), and otherwise seem to complement
the generation results. Indeed, in the second example the generation result is arguably closer to the
desired answer than the retrieval result, with the opposite situation in the third example.

whether the search engine was able to provide a good top-1 result. We also measured the exact-match overlap between the
top-1 results, and found it to be 22/59, and overlap between the top-7 result lists was 182/(59*7).

ACM Trans. Softw. Eng. Methodol., Vol. 37, No. 4, Article 111. Publication date: August 2021.
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Interacting With the Plugin.  Figure 2 illustrates the plugin's user interface. The user rst acti-
vates the query interface by pressing a keyboard shortcut when the cursor is in the IDE's editor.
A popup appears at the current cursor position (Figure 2a), and the user can enter a command in
natural language that they would like to be realized in codeq, reverse a list x 1). The plugin

then sends the request to the underlying code generation and code retrieval systems, and displays
a ranked list of results, with the top 7 code generation results at the top, followed by the top 7 code
retrieval results (Figure 2b); 14 results are displayed in tdtal.

The number 7 was chosen subjectively, trying to maximize the amount and diversity of resulting
code snippets while minimizing the necessary screen space to display them and, therefore, the
amount of scrolling expected from study participants looking to inspect all the plugin-returned
results. After completing the current study, we found that the most relevant code snippets are
typically within the top 3 results, and thus a smaller number of candidates may be su cient.
While the number and ordering of candidates has the potential to have a signi cant impact on the
e ciency and e cacy of the developer assistant, a formal evaluation of this impact is beyond the
scope of this work.

If a code snippet is selected, the code snippet is then inserted in the current cursor's position
in the code editor. The user's selection is also recorded by our instrumentation in the back end.
Understandably, some returned code snippets may not be directly suitable for the context inside the
editor, so the user is welcome (and encouraged by the instructions we give as part of our human
study) to edit the auto-inserted code snippets to t their speci ¢ intent. After the edit is done,
the user is asked to upload their edits to our server, along with the context of the code, using a
dedicated key combination or the IDE's context menu. The process is illustrated in Figure 3. The
edit data enable us to analyze how many and what kind of edits the users need to make to transform
the auto-generated code to code that is useful in their contéxt.

4 HUMAN STUDY DESIGN

Given our NL2Code joint code generation and retrieval IDE plugin above, we designed and carried
out a human study with 31 participants assigned to complete a range of Python programming tasks
in both control (no plugin) and treatment (plugin) conditions.

4.1 Task Design

To emulate real world Python development activities, but also t within the scope of a user study,
we compiled a set of 14 reasonably sized Python programming tasks, organized into 7 categories (2
tasks per category) that span a diversity of levels of di culty and application domains.

We started by identifying representative task categories that many users would encounter
in practice. To that end, we analyzed two sources. First, we manually reviewed all the Python
programming courses listed on three popular coding education websites, Uddditgdecademy®
and Coursera?® to identify modules commonly taught across all websites that indicate common

1INote the special syntax used to mark explicit variables; see Appendix F for full syntax details.

12\/e note that the main motivation for this ordering is that the generation results tend to be signi cantly more concise
than the retrieval results (Figure 6). If we put the retrieval results rst it is likely that the users would rarely scroll past
the retrieval results and view the generation results due to issues of screen real-estate. It is important to consider that
alternative orderings may result in di erent experimental results, although examining alternate orderings was not feasible
within the scope of the current study.

13The edit data may also be helpful as training data for improving code generation and retrieval models. We release our
data publicly to encourage this direction in future work.

Lhttps://www.udacity.com/courses/all

Lohttps://www.codecademy.com/catalog

8https://www.coursera.org/
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usage scenarios of the Python language. Second, we cross checked if the previously identi ed use
cases are well represented among frequently upvoted questions with the [python] tag on Stack
Over ow, which would further indicate real programmer needs. By searching the category name,
we found that each of our identi ed categories covers more than 300 questions with more than
10 upvotes on Stack Over ow. We iteratively discussed the emerging themes among the research
team, re ning or grouping as needed, until we arrived at a diverse but relatively small set of use
cases, covering a wide range of skills a Python developer may need in practice.

In total, we identi ed 7 categories of use cases, summarized in Table 2. For each of the 7 categories,
we then designed 2 tasks covering use cases in the most highly upvoted questions on Stack Over ow.
To this end, we searched Stack Over ow for the python keyword together with another keyword
indicative of the task categorye(g, python matplotlib, python pandas ), selected only questions
that were asking how to do something.€, excluding questions that ask about features of the
language, or about how to install packages), and drafted and iteratively re ned after discussion
among the research team tasks that would cover 3-5 of the most frequently upvoted questions.

We illustrate this process with the following example task for the Data visualization categbfry:

By running python3 main.py , draw a scatter plot of the data ishampoo.csv and save it toshampoo.png The

plot size should be 10 inches wide and 6 inches high. Diage column is the x axis (some dates are missing from the

data and in the plot the x axis should be completed with all missing dates without sales data). The date string shown
on the plot should be in the formatYYYY-MM-DD)rheSales column is the y axis. The graph should have the title

Shampoo Sales Trend . The font size of the title, axis labels, and x & y tick values should be 20pt, 16pt, and 12pt

respectively. The scatter points should be cologdple .

This task covers some of the top questions regarding data visualization mistiplotlib  found
on Stack Over ow through the approach described above:

(1) How do you change the size of gures drawn with matplotli§?

(2) How to put the legend out of the plot?

(3) Save plot to image le instead of displaying it using Matplotlfi3?
(4) How do | set the gure title and axes labels font size in Matplotfb?

For each task designed, we also provide the user with required input data or directory structure for
their program to work on, as well as example outputs (console print-outs, output les & directories,
etc.) so that they could verify their programs during the user study.

Table 2 summarizes the 14 tasks. The full task descriptions and input/output examples can be
found online, as part of our replication package at https://github.com/neulab/tranx-study. The tasks
have varying di culties, and on average each task would take about 15-40 minutes to complete.

4.2 Participant Recruitment & Task Assignments

Aiming to recruit participants with diverse technical backgrounds but at least some programming
experience and familiarity with Python so as to be able to complete the tasks, we advertised our
study in two ways: (1) inside the university community through personal contacts, mailing lists,
and Slack channels, hoping to recruit researchers and students in computer science or related areas;
(2) on the freelancer platform Upwor hoping to attract participants with software engineering

and data science experience. We promised each participant US$5 per task as compensation; each
participant was expected to complete multiple tasks.

LCcorresponding to the search https://stackover ow.com/search?tab=votes&g=python%20matplotlib.
8nttps://stackover ow.com/questions/332289/how-do-you-change-the-size-of- gures-drawn-with-matplotlib
Lnttps://stackover ow.com/questions/4700614/how-to-put-the-legend-out-of-the-plot

20nttps://stackover ow.com/questions/9622163/save-plot-to-image- le-instead-of-displaying-it-using-matplotlib
2lhttps://stackover ow.com/questions/12444716/how-do-i-set-the- gure-title-and-axes-labels-font-size-in-matplotlib
22nttps:/iwww.upwork.com/

ACM Trans. Softw. Eng. Methodol., Vol. 37, No. 4, Article 111. Publication date: August 2021.
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Table 2. Overview of our 14 Python programming tasks.

Category Tasks
Basic Python T1-1 Randomly generate and sort numbers and characters with dictionary
T1-2 Date & time format parsing and calculation with timezone
File T2-1 Read, manipulate and output CSV les
T2-2 Text processing about encoding, newline styles, and whitespaces
oS T3-1 File and directory copying, name editing

T3-2 File system information aggregation

T4-1 Parse URLs and speci ¢ text chunks from web page

T4-2 Extract table data and images from Wikipedia page

T5-1 Implement an HTTP server for querying and validating data

T5-2 Implement an HTTP client interacting with given blog post APIs

T6-1 Data analysis on automobile data of performance metrics and prices
T6-2 Train and evaluate a multi-class logistic regression model given dataset
T7-1 Produce a scatter plot given speci cation and dataset

T7-2 Draw a gure with 3 grouped bar chart subplots aggregated from dataset

Web Scraping
Web Server & Client
Data Analysis & ML

Data Visualization

To screen eligible applicants, we administered a pre-test survey to collect their self-reported levels
of experience with Python and with each of the 7 speci ¢ task categories above; see Appendix B
for the actual survey instrument. We only considered as eligible those applicants who reported at
least some experience programming in Pythae, a score of 3 or higher given the answer range
[1: very inexperienced] to [5: very experienced]; 64 applicants satis ed these criteria.

We then created personalized task assignments for each eligible applicant based on their self
reported levels of experience with the 7 speci c task categories (see Appendix C for the distributions
of participants' self reported experience across tasks), using the following protocol:

(1) To keep the study relatively short, we only assign participants to a total of 4 task categories
(8 speci c tasks, 2 per category) out of the 7 possible.

(2) Since almost everyone eligible for the study reported being at least somewhat experienced
with the rst 2 task categories (Basic Python and File), we assigned everyone to these 2
categories (4 speci c tasks total). Moreover, we assigned these 2 categories rst and second,
respectively.

(3) For the remaining 5 task categories, sorted in increasing complexity oféiee rank them
based on a participant's self reported experience with that task genre, and then assign the
participant to the top 2 task categories with most experience (another 4 speci ¢ tasks total).

Note that this Itering by experience is conducive to allowing participants to nish the tasks in
a reasonable amount of time, and re ective of a situation where a developer is working in their
domain of expertise. However, at the same time it also means that di erent conclusions might be
reached if novice programmers or programmers without domain expertise used the plugin instead.
Next, we randomly assigned the rst task in a category to either the treatment conditia,the
NL2Code plugin is enabled in the virtual environment IDE and the participants are instructed to
use it?4 or the control condition,.e, the NL2Code plugin is disabled. The second task in the same
category is then automatically assigned to the other conditiery, if the plugin is on for task1-1, it

23The task identi ers in Table 2 re ect this order.

24pespite these instructions, some participants did not use the plugin even when it was available and when instructed. We
discovered this while analyzing the data collected from the study and Itered out 8 participants that did not use the plugin at
all. They do not count towards the nal sample of 31 participants we analyze data from, even though they completed tasks.
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Fig. 4. Distributions of task completion times (in seconds) across tasks and conditions (w/ and w/o using the
plugin). The horizontal do ed lines represent 25% and 75% quartiles, and the dashed lines represent medians.

should be o for task1-2. Therefore, each participant was asked to complete 4 tasks out of 8 total
using the NL2Code plugin, and 4 without.

Finally, we invited all eligible applicants to read the detailed study instructions, access the
virtual environment, and start working on their assigned tasks. Only 31 out of the 64 eligible
applicants after the pre-test survey actually completed their assigned t&Kbeir backgrounds
were relatively diverse; of the 31 participants, 12 (39%) were software engineers and 11 (35%) were
computer science students, with the rest being researchers (2, 6%), and other occupations (6, 19%).
Our results below are based on the data from these 31 participants.

4.3 Controlled Environment

Participants worked on their assigned tasks inside a custom instrumented online virtual environ-
ment, accessible remotely. Our virtual machine is precon gured with the PyCharm Community
Edition IDE*® and the Firefox Web browser; and it has our NL2Code plugin either enabled or
disabled inside the IDE, depending on the condition. See Appendix A for complete technical details.

In addition, the environment logs all of the user's interactions with the plugin in the PyCharm
IDE, including queries, candidate selections, and edits; all of the user's ne-grained IDE editor
activities; the user's Web search/browsing activities inside Firefox; all other keystrokes inside the
VM; and the source code for each one of the user's completed tasks.

To get a sense of how the source code evolves, whenever the user does not make modi cations
to the code for at least 1.5 seconds, the plugin also automatically uploads the current snapshot of
the code to our server. The intuition behind this heuristic is that after a user makes some type
of meaningful edit, such as adding or modifying an argument, variable, or function, they usually
pause for a short time before the next edit. This edit activity granularity can be more meaningful
than keystroke/character level, and it is ner grained than intent level or commit level edits.

Given that it is identi able, we record participants' contact information (only for compensation
purposes) separately from their activity logs. This Human Subjects research protocol underwent
review and was approved by the Carnegie Mellon University Institutional Review Board.

4.4 Data Collection
To answer our research questions (Section 2), we collect the following sets of data.

25Note that 4 of the 31 participants did not complete all 8 of their assigned tasks. We include their data from the tasks they
completed and do not consider the tasks they did not nish.
26nttps://www.jetbrains.com/pycharm/download/
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Task Performance Data (RQ1). The rst research question compares measurable properties of
the tasks completed with and without the help of or NL2Code IDE plugin and its underlying
code generation and code retrieval engines. One would expect that if such systems are useful in
practice, developers would be able to complete programming tasks faster without compromising on
output quality. To investigate this, we measure two variables related to how well study participants
completed their tasks and the quality of the code they produced:

Task Completion Tim8ince all activity inside the controlled virtual environment is logged,
including all keystrokes and mouse movements, we calculate the time interval between
when a participant started working on a task ( rst keystroke inside the IDE) and when they
uploaded their nal submission to our server.

Recall that participants worked asynchronously and they may have decided to take breaks;
we designed our virtual environment to account for this, with explicit pause/resume func-
tionality. To account for possible breaks and obtain more accurate estimates of time spent on
task, we further subtract the time intervals when participants used our explicit pause/resume
functionality, as well as all intervals of idle time in which participants had no mouse or
keyboard activity for 2 minutes or more (they may have taken a break without recording it
explicitly).

Figure 4 shows the distributions of task completion times across the two conditions (with
and without the plugin).

Task Correctnedsollowing the common practice in computer science educativg p5 36,

we design a rubric for each task concurrently with designing the task, and later score each
submission according to that rubric. We weigh all tasks equally, assigning a maximum score
of 10 points to each. For each task, the rubric covers both basic aspegtsyns without
errors/exceptions; produces the same output as the example output provided in the task
description) as well as implementation details regarding functional correctneggs ¢onsiders
edge cases, implements all required functionality in the task description).

For example, for the data visualization task described in Section 4.1, we created the follow-
ing rubric, with the number in parentheses representing the point value of an item, for a total
of 10 points: (i) Runs without errors (2); (ii) Correct image output format (png) (2); (iii) Read
in the raw data le in correct data structure (1); (iv) Correct plot size (1); (v) Correctly handle
missing data points (1); (vi) Date (x axis) label in correct format (1); (vii) Title set correctly
(2); (viii) Font size and color set according to speci cation (1).

To reduce subijectivity, we graded each submission blindlg,(hot knowing whether
it came from the control or treatment condition) and we automated rubric items when
possibleg.g, using input-output test cases for the deterministic tasks and checking if the
abstract syntax tree contains nodes corresponding to required types (data structures) such as
dictionaries. See our online appendior the complete rubrics and test cases for all tasks.

Figure 5 shows the distributions of scores across tasks, between the two conditions.

Plugin Queries, Snippets and User Edits (RQ2). We record user queries using the plugin, both

the generated and retrieved code snippet candidates returned for the query, and the user selection
from the candidates to insert into their source code. We use the data to analyze the NL queries and
whether users preferred to use generated vs. retrieved code. In addition, we also record the user
edits after inserting the code snippet from the plugin, along with the code context for the analysis
on post edits required after using the plugin.

27https://github.com/neulab/tranx-study/blob/master/rubrics.md
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Fig. 5. Distributions of task correctness scores (0 10 scale) across tasks and conditions. The horizontal do ed
lines represent 25% and 75% quartiles, and the dashed lines represent medians.

Participant Perceptions of Tool Use (RQ 3). We ran short post-test surveys after every task and

a nal post-test survey at the end of the study as a whole (see Appendix D for instruments) to collect

data on the participants' subjective impressions of using the NL2code plugin and interacting with

the code generation and code retrieval systems. We asked Likert-style and open-ended questions

about aspects of using the plugin the participants enjoyed, and aspects they wish to see improved.
Next we describe how we analyzed these data and we answer each of our research questions.

5 RQi:: NL2CODE PLUGIN EFFECTS ON TASK COMPLETION TIME AND PROGRAM
CORRECTNESS

We start by describing our shared data analysis methodology, applied similarly to both variables
corresponding tdRQq, then present our results for each variable.

Methodology. Recall, we assign each participant a total of 8 tasks, 2 per task category, based on
their experience levels with those categories; in each category, we randomly assign one of the 2
tasks to the NL2Code plugin (treatment) condition and the other task to the no plugin (control)
condition. We then compute the three sets of outcome variables above.

The key idea behind our analysis is to compare the distributions of outcome variables between
tasks completed in the treatment and control conditions. However, this comparison is not straight-
forward. First, our study design imposes a hierarchical structure during data collection, therefore
the individual observations are not independent by construction, the same participant will have
completed multiple tasks over the course of the study. Moreover, tasks vary in di culty, again
by construction, therefore it is expected that their corresponding response variablgstask
completion times, can be correlated with the tasks themselees, on average, more complex tasks
will take longer to complete. Finally, the participants vary in their self reported levels of Python
and individual task category experience; we should separate experience-related e ects from e ects
of using the plugin, if any.

Therefore, we use mixed-e ectS8f] as opposed to the more common xed-e ects regression
models to analyze our data. Fixed-e ects models assume that residuals are independently and
identically distributed, which is an invalid assumption in our case given the hierarchical nature of
our data:e.g, responses for the di erent measurement occasions (tasks) within a given individual
are likely correlated; a highly experienced Python programmer completing one task quickly is
more likely to complete other tasks quickly as well. Mixed-e ects models address this issue by
having a residual term at each level,g, the observation level and the study participant level, in
which case the individual participant-level residual is the so-called random e ect. This partitions
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the unexplained residual variance into two components: higher-level variance between higher-level
entities (study participants) and lower-level variance within these entities, between measurement
occasions (tasks).

We consider two model speci cations for each response variable. Our default model includes
random e ects for the individual and task, per the rationale above, a xed e ect for task category
experience€.g, participants with more machine learning experience should complete the machine
learning task faster, on average), and a dummy variable to indicate the condition (plugin vs no
plugin). For example, for the task completion time response, we estimate the médel:

completion_time = experience , uses_plugin , ! ljuser® , tljtask® Q)

As speci ed, our default model may su er from heterogeneity bidkd. Task category experience,

a higher-level {.e, individual-level as opposed to observation-level) predictor, varies both within and
across study participants: within participantsxperience can vary across the 4 task categories a
user may be more experienced with basic Python than with data science; and across participants,
experience with any given task category is likely to vary as well some participants report higher
experience with data science-related tasks than others. This meanstpatience (a xed e ect)
anduser (a random e ect) may be correlated. In turn, this may result in biased estimates, because
both the within- and between-e ect are captured in one estimate.

There are two sources of variation that can be used to explain changes in the outcome: (1) overall,
more experienced programmers may be more e cient at completing tasks (group-level pattern); and
(2) when becoming more experienced, programmers may also become more e cient at completing
tasks (individual-level pattern). Therefore, to address potential heterogeneity bias, we split our
xed e ect (experience ) into two variables, each representing a di erent source of variation: a
participant's average experience across all task categoegse(ience_btw ), and the deviation
for each task from the participants's overall mean experienegérience_wi ). This process is
known as de-meaning or person-mean centerir8f} This way, mixed-e ects models can model
both within- and between-subject e ectslf3, as recommended for a long time by MundI§Kk9].
Taking the same task completion time response variable as an example (other variables are modeled
analogously), our re ned model becomes:

completion_time = experience_btw , experience_wi , uses_plugin , ! ljuser® tljtask® (2)

In both cases, the estimated coe cient farses_plugin indicates the e ect of using the plugin,
while holding xed the e ects of experience and other random user and task e ects

For estimation we used the functionsier andimer.test in R. We follow the traditional level
for statistical signi cance when interpreting coe cient estimates.e, ? Y 005 As indicators of
goodness of t, we report a marginal € ) and a conditional'(3) coe cient of determination for
generalized mixed-e ects model&(, 85, as implemented in thaiuMirpackage in R: 2 describes
the proportion of variance explained by the xed e ects alone? describes the proportion of
variance explained by the xed and random e ects together.

Threats to Validity. Besides potential threats to statistical conclusion validity arising from the
very nature of the data we are regressing over, discussed above and mitigated through our choice
of mixed-e ects regression models and their speci ¢ designs, we note the standard threats to
statistical conclusion validity a ecting linear regression models in general. To mitigate these, we
take standard precautions. First, we removed as outliers the top 1% most extreme values. Second,
we checked for collinearity among the predictors we use the variance in ation factor (V22); [all

were below 3j.e, multicollinearity is not an issue$§. Finally, we acknowledge that additional time

may be spent as the users are asked to upload their edits, increasing the amount of time necessary

28We are using the R syntax to specify random e ects.
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Table 3. LMER task performance models (default specification).

Dependent variable:

Completion time Correctness score

(€ )

Experience 195862 007
118311° 10724
Uses plugin 1576 044
119611° 1030
Constant 398451 5'88
183807 1103
Observations 224 237
Num users 31 31
Num tasks 14 14
sd(user) 148925 082
sd(task) 11047 114
R2m 0004 0008
R2c 0642 0289
Akaike Inf. Crit. 3,987.14 1,106.66
Bayesian Inf. Crit. 4,007.61 1,127.46
Note: pY0.1; pY0.05; pY0.01

in the plugin setting. However the time spent for uploading is minimal as the plugin automatically
helps the user to remove the auto-generated comments with only a press of a keyboard shortcut.

Results. Table 3 summarizes our default speci cation mixed-e ects regressions for both response
variables; the models with our second speci cation (de-meaned task experience) are equivalent, see
Appendix G. All models include controls for the amount of users' experience with the respective
task categories as well as other random user and task e ects. In all cases, the models t the
data reasonably well (ranging from2 = 29%for task correctness scores, 1¢ = 64%for task
completion time), with most of the variance explained attributable to the two random e ects (task
and user) there is signi cant user-to-user and task-to-task variability in all response variables.

Analyzing the models we make the following observations. First, looking at the completion
time model (1), there is no statistically signi cant di erence between the two conditions. Stated
di erently, we do not nd su cient evidence to conclude that users in the plugin condition
complete their tasks with di erent speed on average than users in the control group, contrary to
our expectation.

Second, and this time in line with our expectation, there is no statistically signi cant di erence
between the two conditions in task correctness scores (model (2)). That is, the code written by users
in the plugin condition appears statistically indistinguishably as correct from the code written by
users in the control group.

We investigate more di erences between the code written by study participants in each of the
two conditions in more detail in the next section.

6 RQ2: COMPARISON OF GENERATED VS RETRIEVED CODE

In this section we focus omow study participants are interacting with the code generation and
retrieval systems. Speci cally, we dive deeper into both the inputs to and the outputs of the plugin,
i.e, we analyze the quality of the queries issued by study participants and of the code snippets
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produced in return, contrasting code generation to retrieval throughout. We analyze these data
along three dimensions, detailed next.

6.1 For What eries do Users Tend to Favor Generation vs Retrieval Answers

First, we investigate whether there are any discernible characteristics of the natural language
gueries (and therefore tasks) that associate with study participants tending to favor the code
snippets returned by the code generation model over those returned by the code retrieval model.

Methodology. Using our instrumented environment, we collect alliccessfudueries issued by

the study participantsi.e, those for which a code snippet from among the listed candidates was
selected, and we record which of the two sources (generation or retrieval) the snippet came from.
See Table 10 in Appendix H for the complete set of queries from our 31 participants, organized per
task. We then build a binary logistic regression model with snippet source as outcome variable and
bag-of-words features of the natural language input queries as predictors.

If this model is able to predict the source of the code snippet better than by chance, then we can
conclude that there is some correlation between the type of input query and the users' preference
for generated versus retrieved code snippets. Moreover, the word feature weights in the logistic
regression model could shed some light on what features are the most representative of queries that
were e ectively answered using generation or retrieval. For our analysis, we manually review the
top 20 (approx. 7%) contributing query features for each value of the outcome variable ( generation
vs retrieval ) and discuss patterns we observe qualitatively, after thematic analysis.

Speci cally, for each query, we tokenize it, Iter out English stop words, and compute a bag-of-
words and bag-of-bigrams vector representation, with each element of the vector corresponding to
the number of times a particular word or bigram (two-word sequence) occurred in the query. The
number of distinct words in all queries is 302, and the number of distinct bigrams in all queries is
491, and thus the dimensionality of the query vector is 798Ve then estimate the model:

expX\P
1. expX\P 3

whereX here represents a-dimensional bag-of-word vector representation of a given query, &d

are the weights to be estimated. To this end, we randomly split all the collected query and candidate
selection pairs into training (70% of the data) and held-out test (30%) sets. We then train the model
using 5-fold cross-validation until it converges, and subsequently test it on the held-out set. We use
0.5 as a cuto probability for our binary labels. In addition, we also build a trivial baseline model
that always predicts retrieval.

The baseline model is 55.6% accurate (among the successful queries in our sample there are
slightly more code snippets retrieved rather than generated). Our main logistic regression model is
65.9% accurateg, the model was able to learn some patterns of di erences between those queries
that result in code generation results being chosen over code retrieval ones and vice versa.

Threats to Validity. One potentially confounding factor is that the plugin always displays code
generation results rst, before code retrieval. Ordering e ects have been reported in other do-
mains [L04 and could also play a role here. Speci cally, users who inspect query results linearly,
top-down, would see the code generation results rst and might select them more frequently than
if the results were displayed in a di erent order. That is, we might infer that users prefer code
generation to retrieval only because they see code generation results rst, thus overestimating the
users' preference for code generation versus retrieval.

%Achosen snippet is generateti=

2%\ also experimented with other features,g, query length, query format compliance, etc., but did not notice a signi cant
di erence in prediction accuracy.
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Table 4. Mostimportant 20 features and their weights from the logistic regression modeling whether successful
plugin queries result in generated or retrieved code snippets.

Generation Retrieval
Weight Feature Weight Feature Weight Feature Weight Feature
0.828 open 0.352 current 0.471 letters 0.294 extract
0.742 time 0.345 delete row 0.442 copy 0.289 set
0.676 sort 0.345 random number 0.438 matplotlib 0.289 plt set
0.590 read csv 0.339 trim 0.437 datetime 0.282 read le
0.556 list 0.330 text le 0.410 python 0.282 cross validation
0.507 number 0.326 keys 0.365 column csv 0.274 scikit
0.402 search 0.310 round 0.361 bar 0.274 dataframe csv
0.399 open le  0.293 numbers 0.344 copy les 0.274 sklearn
0.385 dictionary 0.291 row dataframe  0.334 delete column 0.272 digit
0.353 read 0.290 load csv 0.302 write le 0.270 folders

Even though testing ordering e ects experimentally was not practical with our study design,
we could test a proxy with our log data to what extent the code generation results overlap with
the code retrieval ones. High overlap could indicate that code retrieval results might have been
chosen instead of code generation ones, if presented earlier in the candidates list. Whenever study
participants chose a snippet returned by the code generation model, we compared (as strings) the
chosen snippet to all candidates returned by the code retrieval engine. Only 6 out of 173 such
unique queries (~3.5%) also contained the exact chosen code generation snippet among the code
retrieval results, therefore we conclude that this scenario is unlikily.

Another potentially confounding factor is that an icon indicative of generation or retrieval is
displayed next to each result in the plugin Ul. This means that users know which model produced
which candidate snippet and might choose a snippet because of that reason rather than because of
the snippet's inherent usefulness. More research is needed to test these e ects. We hypothesize that
biases may occur in both directions. On the one hand, holding other variables like ordering xed,
users might prefer code generation results because of novelty e ects. On the other hand, users
might prefer code retrieval results because of general skepticism towards automatically generated
code, as has been reportexlg, about automatically generated unit tests [33, 103].

Regarding the analysis, we use an interpretable classi er (logistic regression) and follow standard
practice for training and testing (cross-validation, held-out test st), therefore we do not expect
extraordinary threats to validity related to this part of our methodology. However, we do note the
typical threats to trustworthiness in qualitative research related to our thematic analysis of top
ranking classi er features 8§. To mitigate these, we created a clear audit trail, describing and
motivating methodological choices, and publishing the relevant data (queries, top ranking features
after classi cation,etc). Still, we note potential threats to transferability that may arise if di erent
features or di erent classi ers are used for training, or a di erent number/fraction of top ranking
features is analyzed qualitatively for themes.

Results. In Table 4, we show the top features that contributed to predicting each one of the two
categories, and their corresponding weights. Inspecting the table we make two observations.

First, we observe that for code generation, the highest ranked features (most predictive tokens
in the input queries) refer mostly to basic Python functionality,g, open, read csv, text le

3ONote that this only considers exact substring matches. There may be additional instances of functionally equivalent code
that is nonetheless not an exact match.
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(opening and reading a le), sort, list, number, dictionary, keys (related to basic data structures
and operations in Python), random number (related to random number generation), trim (string
operations), etc. For example, some stereotypical queries containing these tokens that result in the
code generation snippets being chosen are open a csv le data.csv and read the data, get date
and time in gmt, list all text les in the data directory, etc.

In contrast, we observe that many queries that are more likely to succeed through code retrieval
contain terms related to more complex functionality, some usually requiring a series of steps to
ful ll. For example, datetime (regarding date and time operations), cross validation, sklearn,
column csv (regarding machine learning and data analysis), matplotlib (data visualization), etc.
are all among the top features for queries where users more often chose the code retrieval snippets.

In summary, it seems predictable (substantially more so than by random chance) whether natural
language user queries to our NL2Code plugin are more likely to succeed through code generation
vs code retrieval on average, given the contents (words) of the queries.

6.2 How Well-Specified Are the eries

Search is a notoriously hard problemT, 69, especially when users do not start knowing exactly
what they are looking for, and therefore are not able to formulate clear, well-speci ed search queries.
In this subsection we investigate the quality of the input natural language queries, and attempt to
delineate it from the quality of the underlying code generation and retrieval systems either one or
both may be responsible for failures to obtain desirable code snippets for a given task.
Anecdotally, we have observed that input queries to our NL2Code plugin are not always well-
speci ed, even when the participants selected and inserted into their code one of the candidate
snippets returned by the plugin for that query. A recurring issue seems to be that study participants
sometimes input only a few keywords as their query.g, move le ), perhaps as they are used
to interacting with general purpose search engines like Google, instead of more detailed queries
as expected by our plugin. For example, study participants sometimes omit (despite our detailed
instructions) variable names part of the intent but de ned elsewhere in the prograng,( save
dataframe to csv omits the DataFrame variable name). Similarly, they sometimes omit ags and
arguments that need to be passed to a particular APl methed,(load json from a le omits the
actual JSON lename).

Methodology. The key idea behind our investigation here is to replace the underlying code
generation and retrieval systems with an oracle assumed to be perfect a human expert Python
programmer and study how well the oracle could have produced the corresponding code shippet
given a natural language input query. If the oracle could successfully produce a code snippet
implementing the intent, then we deem the query good enough, or well-speci ed; otherwise,
we deem the query under-speci ed. The fraction of good enough queries to all queries can be
considered as an upper bound on the success rate of a perfect code generation model.

Concretely, we randomly sampled 50 queries out of all successful queries issued during the
user study (see Table 11 in Appendix | for the sample), and had the rst author of this paper, an
pro cient programmer with 8 years of Python experience, attempt to generate code based on each
of them. The oracle programmer considered two scenarios: (1) generating code given the input
query as is, without additional context; (2) if the former attempt failed, generating code given the
input query together with the snapshot of the source le the study participant was working in at
the time the query was issued, for additional context.

For each query, we record three binary variables: two indicating whether each of the oracle's
attempts succeeded, without and with additional context, respectivebnd the third indicating

31The former implies the latter but not vice versa.
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whether the code snippet actually chosen by the study participant for that query came from the
code generation model or the code retrieval one; see Table 11 in Apperdix |.

We then measure the correlation, across the 50 queries, between each of the two oracle success
variables and the code snippet source variable, using the phi coe cgfi23, a standard measure of
association for two binary variables similar to the Pearson correlation coe cientin its interpretation.
This way we can assess how close the code generation model is from a human oractm(itie
enough as iscenario), and whether contextual information from the source code the developer
is currently working on might be worth incorporating into code generation models in the future
(the good enough with contegtenario); note that the code generation model we used in this
study [117, 124] does not consider such contextual information.

Threats to Validity. We follow standard practice for the statistical analysis in this section, therefore
we do not anticipate notable threats to statistical conclusion validity. Due to the limitations of our
telemetry system, we did not record unsuccessful queries (i.e. queries that the user entered but
no candidate is selected). As a result, queries that favor neither generation nor retrieval cannot be
compared. However, we acknowledge three other notable threats to validity. First, we used only one
expert programmer as oracle, which may introduce a threat to construct validity given the level of
subjectivity in determining which queries are good enough . To mitigate this, we discussed among
the research team, whenever applicable, queries for which the expert programmer was not highly
con dent in the determination. Second, our random sample of 50 queries manually reviewed by
the expert programmer is only representative of the population of 397 queries with 95% con dence
and 13% margin of error, which may introduce a threat to internal validity. However, the relatively
small sample size was necessary for practical reasons, given the high level of manual e ort involved
in the review. Finally, we note a potential threat to construct validity around the binary variable
capturing the source (generation or retrieval) of the candidate code snippets selected by the study
participants. There is an implicit assumption here that study participants know what the right
answer (code snippet) should be given a natural language query, and are able to recognize it among
the candidates provided by the NL2Code plugin; therefore, we assume that the snippet source
variable captures actual quality di erences between code snippets produced by the generation
and retrieval models, respectively. However, this may not be the case. To test this, we reviewed
all the candidate snippets returned by the plugin for the rst 6 among the 50 queries analyzed.
Across the6 2 models (generation/retrieval)? candidates per modet 84candidate snippetsve

only discovered one case where the study participant could have arguably chosen a more relevant
snippet. Therefore, we expect the incidence of violations of this assumption to be rare enough to
not materially a ect our results.

Results. Table 5 shows contingency tables for each of the two oracle comparison scenarios. Note
that the good enough with context category includes all queries that are good enough as is, by
construction. Inspecting the results in the table, we make the following observations.

First, the natural language queries analyzed are more often than not insu ciently well-speci ed
for even the human expert to be able to write code implementing those intents; only 20 out of 50
queries (40%) are deemed good enough as is by the oracle. Representative examples of failures

32Note that on the surface, when looking at the data in Table 11, the values of the former two binary variables (the oracle's
determination) may not always seem intuitive given the query. For example, the oracle determined the query pandas to csv
to benot good enougleven with context, while the query pandas output csv, seemingly equivalent, was found tgduel
enough with contextn both cases, the intent appears to be exporting a pandas dataframe (a popular data science Python
library) as a csv le. However, in the rst example the snapshot of the source le the study participant was working in at
the time of the query did not yet includany such dataframe objects; the user appears to have issued the query ahead of
setting up the rest of the context. A context-aware code generation model would also not be able to extract any additional
information in this case, similarly to the human oracle.
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Table 5. Contingency tables for the two oracle comparison scenarios in
Section 6.2; see Table 10 in Appendix H for the actual queries.

Snippet Query
_ Good enough asis Good enough w/ context
Generation False True False True
False 23 8 15 16
True 7 12 1 18

from Table 11 are the queries consisting of a few keyworelg)( csv writer, defaultdict ) rather
than queries containing su cient details about the user's interg.g, remove rst column from

csv le). Considering the source le the user was editing at query time helps, with 34 (68%) of the
gueries now being deemed good enough with context by the oracle.

Second, there is moderately high and statistically signi cant association between the success of
the code generation moddl ¢, the study participant choosing one of those candidate code snippets)
and the quality of queries in both scenariag:= 0"37(? = 0"008 for already well-speci ed queries
andq = 045(? = 000 for queries that become informative enough given additional context. This
suggests that input query quality can have a big impact on the performance of the code generation
model, and that incorporating additional contextual information may help.

Analyzing the failure rate of the code generation model (generation = False), we observe that
it is relatively high in general (31 out of 50 queries, or 62%). However, most of these cases are in
response to under-speci ed queries (23 out of the 31 failures; 74%), for which even the human
oracle failed to generate the corresponding code. Still, there are 8 (26%) failure cases where the
human expert could directly implement the natural language intent without additional context:
date now, for loop onrange 100, generate random letters, get now one week from now, get
time and date, open "data.csv" le, how to remove an item from a list using the index, and plt
create 3 subplots . All but the last one seem to refer to basic Python functionality. These queries are
targets where further improved code generation techniques could improve the utility of the plugin.

Interestingly, we also observe a non-trivial number of under-speci ed queries (7 out of 30;
23%) for which the code generation model succeeded despite the human oracle failing: call

pick with_replacement, copy a le to dist, pandas round value, pandas to csv, rename
column pandas, pltaxlegend, and scatter.

6.3 How Much Are the Code Snippets Edited A er Plugin Use

Choosing (and inserting into the IDE source le) one of the candidate code snippets returned by

the NL2Code plugin indicates that the code snippet was generally useful. However, while useful,
the code snippet may still be far from an ideal solution to the user's query. To get a sense of how
appropriate the accepted code snippets are given the user intent, we compare the distributions of
shippet lengths beford.g, as returned by the plugin) and after potential edits in the IDE.

Methodology. When inserting a code snippet a user selected from among the plugin-returned
candidates, we also insert special code comments in the source le around the snippet, to mark the
start and end of the code fragment corresponding to that particular intent (as shown in Figure 3).
Study participants are instructed to use a certain key combination when they are done editing that
code fragment to remove the delimiters and submit the edited version of the code fragment back to
our server. Our analysis in this section compares the length of code snippets and types of tokens
present between these two versions.
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Fig. 6. Splitviolin plots comparing the length (in tokens) of the code snippets chosen by the study participants
across all successful queries, before and a er potential edits in the IDE. The horizontal do ed lines represent
25% and 75% quartiles, and the dashed lines represent medians.

Speci cally, we rst tokenize and tag each version of a code snippet using a Python tokenizer,
and then compare the pairs of distributions of lengths before and after edits for code snippets
originating from each of the two underlying models, generation and retrieval, using the non-
parametric Wilcoxon signed-rank test; in addition, as a measure of e ect size we compute the
median di erence between members of the two groups, the Hodges Lehman estimatorg.

We also compute and report on the Levenshtein edit distance between the two versions, in terms of
number of tokens. Figure 6 visualizes these di erent distributions.

Threats to Validity. We note two potential threats to construct and external validity related to

the analysis in this section. First, we have no way of enforcing that study participants contain their
code edits related to a particular intent to the section of the source le specially delimited by code
comments for this purpose. One may include unrelated edits in the same code region, or make related
edits outside of the designated region. Therefore, our measuremesnippet length post editsay

not accurately re ect the construct of snippet length as related to a particular intent. To mitigate
this, we gave clear instructions to participants at the beginning of the study and manually reviewed

a small sample of the edited versions of a snippet, not discovering any obvious noise. Second, not all
study participants followed our instructions every time they used the plugin, and submitted their
nal (edited or not) version of the snippet back to our server. Only 303 out of the 397 successful
gueries recorded (76.3%) had nal code snippets uploaded back to our server. Since this was not
a random sample, our ndings on this sample may not generalize to the entire population of 397
successful queries. To assess the severity of this potential threat, we compared the distributions of
plugin-returned code snippet lengths between all successful queries and just the 303 queries where
study participants uploaded their edits onto our server; for both generated (Wilcoxen(054)

and retrieved ? = 093 code snippets, we found the respective two distributions statistically
indistinguishable, therefore we expect this to not be a sizable threat to validity.

Results. Comparing the two distributions of token lengths for acceptable code snippets from the
code generation model before and after edits, we do not nd any statistically signi cant di erences
in their mean ranks ? = 0"345. The mean edit distance between the two versions of these snippets
is 5.2 tokens (min 0, max 130, median 1).

In contrast, comparing the two distributions of token lengths for acceptable code snippets from
the code retrieval engine before and after edits, we nd a statistically signi cant di erence in
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Table 6. Most frequently added/deleted tokens a er user edits to plugin-returned code snippets.

Addition Deletion

Freq. Token Freq. Token Freq. Token Freq. Token
0.0040 in 0.0016 w -0.0071 2 -0.0016 In
0.0037 for 0.0015 with -0.0071 1 -0.0016 11
0.0030 line 0.0015 -0.0043 a -0.0015 vy
0.0024 le 0.0015 days -0.0038 0 -0.0014 Seattle
0.0023 key 0.0015 cur_v -0.0034 3 -0.0014 12
0.0023 os.path.join  0.0015 company_info -0.0025 plt -0.0013 4
0.0021 dic 0.0015 n -0.0023 50 -0.0013 iris
0.0021 lename 0.0014 output -0.0021 id_generator -0.0013 string.digits
0.0018 print 0.0014 codecs.open -0.0018 Out -0.0013 10
0.0017 if 0.0014 v -0.0017 df -0.0013 matplotlib.pyplot

their mean ranks? = 1"195e 7). The Hodges Lehman median di erence between the edited and
unedited versions of these snippets is 18 tokens, with a 95% con dence interval from 11 to 23
tokens. The edit distance metric paints a similar picture acceptable code snippets from the code
retrieval engine, before and after edits, are at a mean edit distance of 13.2 tokens from each other
(min 0, max 182, median 0).

We also note that code retrieval snippets tend to be longer than code generation ones both before
(? Y 22e 16 median di erence 18 tokens, with a 95% con dence interval from 14 to In nity) and
after edits = 2'657e 14 median di erence 10 tokens, with a 95% con dence interval from 7 to
In nity). This may help explain why the retrieved snippets require more edits to correct the code
to better suit the current programming code context, compared to the generated snippets.

Diving deeper into the edits to the plugin-supplied version of the di erent snippets, we compute
the frequency distribution of tokens in both versions (plugin and nal), normalized based on total
token count in each corpus. Table 6 highlights the tokens with the greatest increases and decreases
in relative frequency during editing. We observe that study participants seem to add common
keywords such as in, for, if, with , built-in names and functions such as key, print, and common
variable names such as line, lename to the generated/retrieved candidates. Stated di erently, in
these cases the code snippets seem to miss substantive parts and relevant functionality, which also
may be partly due to the lack of speci city described in the previous section.

In contrast, study participants seem to delete number and string literals from the code snippets.
This may be explained by the fact that the tool used retrieved code snippets as they appeared on
Stack Ove ow, and thus many retrieved code snippets contain additional boilerplate code required
for initialization or setup, and hard-coded example inputs and outputs. We also observe some
commonly used variable names like df, plt that get deleted, suggesting that variable replacement
is one of the common operations when reusing the code snippets. An interesting observation here
isthat In and Out are getting deleted frequently. We nd that it's mostly due to some of the code
snippets retrieved from Stack Over ow being in the format of IPython REPL, which uses In and
Out to separate the Python source code and execution outputs. When integrating these snippets,
the users will have to remove this super uous text. Figure 7 shows a representative example of
such user edits after selecting a candidate snippet, which involves deleting IPython REPL contents,
variable replacement and addition, as well as literal replacements.

Furthermore, following the previous observations on actual tokens, we are interested in how
the frequency of di erenttypesof tokens changes before and after users edit the plugin-returned
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Unedited Edited

In [479]: df 1 car_prices = car_prices["price"].mean()
Out[479]:

ID Dbirthyear  weight

619040 1962 0.123123

600161 1963 0.981742

25602033 1963 1.312312

624870 1987 0.942120

© 0 N O N WN R
W NP O

In [480]: df["weight"].mean()
Out[480]: 0.83982437500000007

[N
o

Fig. 7. Representative example of user edits to a code snippet retrieved from Stack Overflow.

Table 7. Frequency changes of di erent token types a er user edits to plugin-returned code snippets. Sorted
in descending order, positive number represents addition and negative number represents deletion.

Freq. Type Freq. Type Freq. Type Freq. Type

0.0138 NAME 0.0053 DEDENTO0.0004 COMMENT0.0095 OP
0.0053 INDENT 0.0022 STRING -0.0049 NEWLINE -0.0248 NUMBER

code snippets. We use thekenize 33 Python 3 library to parse and tag the code snippets, and
compare the frequency changes by token type, similar to the previous analfdike results are
shown in Table 7. We nd that users add neNAMEdenti ers, keywords) tokens the most, with

the frequency ofSTRINGstring literal) tokens slightly increased, ardlOMMEREBmmMent strings)
tokens staying roughly the same after the edidUMBERumeric literal) tokens are deleted the
most, in line with the observation above, again suggesting that many plugin-returned snippets
are not tailored to speci c identi ers and parameters that the user desires. Interestingly, we also
see a slight decrease in frequency MEWLINEBkens, representing a decrease in the number of
logical lines of Python code after edits. This suggests that the plugin-returned code snippets are
not concise enough in some cases.

7 RQs3: USER PERCEPTIONS OF THE NL2CODE PLUGIN

Our last research question gauges how study participants perceived working with the NL2Code
plugin, their pain points, and their suggestions for improvement.

Methodology. As part of our post-test survey, we asked the participants open-ended questions
about what worked well when using the plugin and, separately, what they think should be improved.
In addition, we asked participants to rate their overall experience using the plugin on a Likert scale,
ranging from 1 (very bad) to 5 (very good). We then qualitatively coded the answers to open-ended
questions to identify themes in the responses for the 31 who completed all their assigned tasks.

Threats to Validity. We acknowledge usual threats to trustworthiness and transferability from
qualitatively analyzing a relatively small set of open-ended survey d&@,[as also discussed
above. In particular, we note that only one researcher was involved in coding. To mitigate these
threats, we release all verbatim survey responses as part of our replication package.

33nttps://docs.python.org/3/library/tokenize.html

343 of the retrieved snippets cannot be parsed and thus are omitted. See full explanation of di erent token types at
https://www.asmeurer.com/brown-water-python/tokens.html. We also left out some uninteresting token types, such as
ENCODINENDMARKER.
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Results. Overall, study participants report having a neutral (15/31; 48.4%) or at least somewhat
positive (15/31; 48.4%) experience using the NL2Code plugin, with only one participant rating their
experience as somewhat negative.

Among the aspects the participants report pssitive , we distill two main themes:

The plugin helps nd code snippets the developer is aware of but cannot fully renfBtde2, P8,
P10, P11, P19, P20, P21, P22, P30, P31) These tend to be small commands or less familiar API calls
and API usage patterns, that users have seen before. Two participants summarize this well:

On a few occasions, the plugin very conveniently gave me the snippet of code | was looking
for, [which] was "on the tip of my tongue". (P10)

Sometimes | just cannot remember the exact code, but | remember the shape. | could
select the correct one easily.(P2)

Respondents expressed appreciation for both the generation and retrieval results, and there was
little expression of preference for one method over the otheg:

Even just having the snippets mined from Stack Over ow visible in the IDE was a good
memory refresher / source of ideas(P10)

It was somewhat convenient to not have to switch tabs to Google things, ..., based on my
memory, that most of the suggestions | got were from the internet anywayP5)

It has all resources needed at one placeP6)

Using an in-IDE plugin is less disruptive than using a web bro{iPerP4, P5, P6, P7, P10, P18,
P20, P24, P27) Many of our respondents who were positive about the plugin reiterate expected
context-switching bene ts of not leaving the IDE while programming,g:

| like that the plugin stops me having to go and search online for solutions. [...] It can be
very easy to get distracted when searching for solutions onlingP20)

Compared with manual search, this is faster and less disruptiveP1)
Participants also describe many aspects of the plugin tt@ild be improved .

The quality of code generation and retrieval results could be higBeP4, P5, P7, P9, P13, P14,
P23, P27, P29, P31) Respondents mentioned that itraras (P7)when they could directly use code
from plugin, without modi cations. In some cases, results from the plugin weret related to the
search (P14) and usersdidn't nd what [they were] searching for (P31) As one respondent humbly
summarized it:

The model needs some improvements(P4)

The insu cient quality of the plugin's results was especially felt as the tasks became more
complex and involved APIs with complex usage patterns. One participant summarized this well:

For easy tasks, like walking through a directory in the lesystem, the plugin saves me time
because what | did previously was to go to Stack Over ow and copy the code. But for
di cult tasks like data processing or ML, the plugin is not helpful. Most snippets are not
useful and | have to go to the website of sklearn to read the full doc to understand what |
should do. (P3)

A particular related pain point is that the snippets from the code retrieval engine often contain
spurious elements (as also noted above). In one participant's words:

When inserting the code into my program, | would like to **not** copy the input/output
examples, and | can't imagine ever wanting those in the program itselfP5)
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Users could bene t from additional contg®3, P5, P8, P18, P19, P20, P24, P26, P27) Some respon-
dents mention that it would be useful to include additional (links to) explanations and documentation
alongside the returned code snippets so that the user could understand what the snippet is supposed
to do, or evenwhich of the suggestions is the correct one when you are not familiar with a module
(P11) In two participants' words:

It would be nice if the examples from the internet could contain the relevant context of the
discussion (e.g., things to consider when using this suggestion), as well as the input/output
examples. (P5)

| hope the generated code snippet can have more comments or usage [examples]. Otherwise
| still need to search the web to understand what it is.(P3)

A closely related theme is thatsing the plugin assumes one hagoad background understanding
of the underlying principles/modules/frameworks (P11) and they primarily need help withlook[ing]
up little syntax bits that you have forgotten (P11) (P1, P11, P16, P25) One participant was especially
critical:

For more complex problems, | think the plugin does not help at all, because the programmer
needs to know the theoretical background.(P16)

The plugin could bene t from additional contef®4, P9, P10, P17, P30) Some participants suggest
that the plugin could be smarter if it becomes more aware of the local context in the developer's
IDE,e.g:

Sometimes | want to generate an expression to be inserted somewhere, to be assigned to a
variable, or to match the indentation level, without having to tell the plugin this explicitly.
| didn't feel like the plugin was aware of context. (P10)

Participants also comment on hothe plugin's query syntax takes some getting us€& 2o
P12, P15), referring in particular to the way the code generation model expects queries to include
variables, while the web search code retrieval engine allows users to only use keywords. For
example:

[It became] useful to me towards the end when | got the hang of it and could formulate
questions in the correct way (which | feel is somewhat of a skill in itself)P15)

It is not very natural for me to “instantiate’ my questions, | mostly like to search [using]
keywords or just a description of what | want to achieve.(P2)

Querying the plugin could be interactiy@l11, P20, P30) Finally, some participants suggest to
make querying interactive, dialogue-based, rather than unidirectional. This could with re ning
queries until they are su ciently well-speci ed, or to decompose complex functionality into smaller
stepse.g:

A chatbot [...] could identify the rough area in which the user needs assistance, [and] could
help narrow it down further, helping to pinpoint an exact solution. (P20)

8 DISCUSSION AND IMPLICATIONS

Recent years have seen much progress from machine learning and software engineering researchers
developing techniques to better assist programmers in their coding tasks, that exploit the advance-
ments in (deep) learning technology and the availability of very large amounts of data from Big Code
repositories like GitHub and Stack Over ow. A particularly promising research direction in this
space has been that addressing the decades-old problem of natural language programgting [

i.e, having people instruct machines in the same (natural) language they communicate in with
each other, which can be useful in many scenarios, as discussed in the Introduction. However,
while excited about this research direction and actively contributing to it ourselves, we are also
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guestioning whether the most impact from such work can be had by focusing primarily on making
technological advancements., as we write this, a one-trillion parameter language model has just
been announced)d, as only the most current development in a very rapidly evolving eld) without
also carefully considering how such proposed solutions can t within the software development
work ow, through human-centered research.

In this spirit, we have presented the results of a controlled experiment with 31 participants with
diverse background and programming expertise, observed while completing a range of Python
programming tasks with and without the help of a NL2Code IDE plugin. The plugin allows users
to enter descriptions of intent in natural language, and have corresponding code snippets, ideally
implementing said intent, automatically returned. We designed the plugin with two research goals
in mind. First, we sought to evaluate, to our knowledge for the rst time using a human-centered
approach, the performance of some NL2Capmeratiormodel with state-of-the-art performance
on a benchmark dataset, but unknown performance in the wild . Second, we sought to contrast
the performance and user experience interacting with such a relatively sophisticated model to
those of a relatively basic NL2Codetrievalengine, that merely retrieves existing code snippets
from Stack Over ow given natural language search queries. This way, we could estimate not only
how far we are from not having to writeany code while programming, but also how far we have
come on this problem given the many recent advancements in learning and availability of datasets.

Main Results. Overall, our results are mixed. First, after careful statistical analysB@y, compar-

ing tasks completed with and without using the NL2Code plugin (and either of its underlying code
generation or retrieval systems), we found no statistically signi cant di erences in task completion
times or task correctness scores.

The results forcode metrics (SLOC and CC) can be seen as mixed. One the one hand, the code
containing automatically generated or retrieved fragments is not, on average, any more complex
or any less maintainable than the code written manually, insofar as the CC and SLOC metrics
can distinguish. One the other hand, one could have expected the opposite resuthat since
NL2Code tools are typically trained on idiomatic code, using them should lead to better, more
idiomatic code overall, which might suggest lower SLOC and CC values, on average.

Among the possible explanations for why we don't nd supporting evidence for the better
code hypothesis, two stand out: (i) the two metrics are only crude approximations of the complex,
multifaceted concept of code quality; and (ii) even when writing code manually , developers still
consult the Web and Stack Over ow.€, the same resources that these NL2Code tools were trained
on) and copy-paste code therein. To better understand the interaction between using the plugin
and using a traditional Web browser, we used the event logs from our instrumented environment
and compared the distributions of in-browser Web searches between tasks where the 31 study
participants used the NL2Code plugin (median 3, mean 5, min 0, max 35 searches per user per
task) and tasks where they did not (median 4, mean 7, min 0, max 48). A mixed-e ects regression
model similar to the ones in Section 5, controlling for individual self-reported experience and with
random e ects foruser andtask , reveals a statistically signi cant e ect of using the plugin on
the number of in-browser Web searches: on average, using the plugin is associated witw28
in-browser Web searches; however, this e ect is smaller than the standard deviation of the random
user intercept (~4 in-browser Web searches). We conclude that developers still search the Web
when using the plugin, even if slightly less than when not using the plugin.

Using a similar argument, the result fdask correctness scorescan be seen as mixed. Code
containing automatically generated or retrieved snippets is not, on average, any less appropriate
for a given task as per our rubric than code written manually. However, using the NL2Code plugin
doesn't seem to help our study participants signi cantly improve their scores either, despite there
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being room for improvement. Even though across our sample the median score per task was 7 out
of 10 when using the plugin and 6 when not using the plugin, the multivariate regression analysis
did not nd the di erence to be statistically signi cant.

The result fortask completion times can be seen as negative and, thus, is perhaps the most
surprising of our results: on average, study participants do not complete their tasks statistically
signi cantly faster when using the NL2Code plugin compared to when they are not using it. There
are several possible explanations for this negative result. First, we acknowledge fundamental
limitations of our study design, which we hope future researchers can improve on. In particular,
our tasks, despite their diversity and, we believe, representativeness of real-world Python use, may
not lend themselves su ciently well to NL2Code queries and, therefore, study participants may not
have su cient opportunities to use, and bene t from, the plugin. Moreover, our study population
(31 participants) may not be large enough for us to detect e ects with small sizes, should they exist.

However, even with these limitations, considering also our resultsRip, and RQ3; we argue
that another explanation is plausibleur NL2Code plugin and its main underlying code generation
technology, despite state-of-the-art (BLEU-score) performance on a benchmark dataset, is not develope
enough to be markedly useful in practice just@eir telemetry dataRQ) shows not only that study
participants still carry out in-browser Web searches even though the NL2Code plugin was available,
as discussed above, but also that the code snippets returned by the plugin, when used, undergo
edits after insertion in the IDE, suggesting insu cient quality to begin with. Our qualitative survey
data RQs) paints a similar picture of overall insu cient quality of the NL2Code results.

Implications. While our study suggests that state-of-the-art learning-based natural language to
code generation technology is ways away from being useful in practice, our results should be
interpreted more optimistically.

First, we argue thathe problem is worth working on . In contemporary software development,
which involves countless and constantly changing programming languages and APIs, natural
language can be a useful medium to turn ideas into code, even for experienced programmers. A
large fraction of our study participants commended NL2Code developer assistants for helping
them remember the precise syntax or sequence of API calls and their arguments, required to
implement some particular piece of functionality. When integrated into the development work ow,
e.g, through an IDE plugin, such systems can help developers focus by reducing the need for
context switching, further improving their productivity. Our quantitative task performance results
for the current version of this NL2Code plugin, while negative, do not imply that future, better
performing such systems will also not be markedly useful in practice; the qualitative data from our
our study participants already suggests otherwise, as does quantitative data from prior research on
the usefulness of in-IDE code search plugins [92].

Second, we argue thdlis particular style of code generation is worth working on . Our
analysis of input queries and resulting code snippets R, shows that the code generation
model produces fundamentally di erent results than the (simple) code retrieval engine we used for
comparison, and that study participants choose snippets returned by the code generation model
almost as frequently as they do snippets from the code retrieval engine. In turn, this suggests that,
at least within the scope of the current study, one type of model cannot be used as a substitute for
the other. As discussed above, the code generation model does almost always produce di erent
results than the code retrieval model. However, it was unclear from that analysis whether the
generated code snippets re ect some fundamentally higher level of sophistication inherent to the
code generation model, or whether the code retrieval engine we used for comparison is simply too
naive.
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To further test this, we performed an additional analysis. Speci cally, we looked up the chosen
code generation snippets in the manually-labeled Stack Over ow dataset used for training the code
generation model, to assess whether the model is simply memorizing the training inputs. Only 13
out of the 173 unique queries (~7.5%) had as the chosen code fragment snippets found verbatim
in the model's training dataset. Therefore, the evidence so far suggests that the code generation
model does add some level of sophistication, and customization of results to the developers' intent
(e.g, composing function calls), compared to wheaty code retrieval engine could.

Third, we provide the followingconcrete future work recommendations  for researchers and
toolsmiths in this area, informed by our results:

Combine code generation with code retriéyaf.results suggest that some queries may be
better answered through code retrieval techniques, and others through code generation. We
recommend that future research continue to explore these types of approaches janly,
using hybrid models [40, 41] that may be able to combine the best of both worlds.

Consider the user's local context as part of the iffput.oracle comparison revealed that
users' natural language queries can often be disambiguated by considering the local context
provided by the source les they were working in at the time, which in turn could lead

to better performance of the code generation model. There is already convincing evidence
from prior work that considering a user's local context provides unique information about
what code they might type nextI11. In addition, some work on code retrieval has also
considered how to incorporate context to improve retrieval results]f this may be similarly
incorporated.

Consider the user's local context as part of the oufmutsidering where in their local IDE
users are when invoking an NL2Code assistant can also help with localizing the returned code
snippets for that context. Some transformations are relatively simplg, pretty printing and
indentation. Other transformations may require more advanced program analysis but are
still well within reach of current technologye.g, renaming variables used in the returned
snippet to match the local context (the Bing Developer Assistant code retrieval endih§ [
already does this), or applying coding conventions [2].

Provide more context for each returned snighatstudy shows that NL2Code generation or
retrieval systems can be useful when users already know what the right answer is, but they
need help retrieving it. At the same time, many of our study participants reported lacking
su cient background knowledge, be it domain-speci ¢ or API-speci c, to recognize when a
plugin-returned code snippet is the right one given their query, or what the snippet does
in detail. Future research should consider incorporating more context and documentation
together with the plugin's results, that allows users to better understand the cedg,links

to Stack Over ow, o cial documentation pages, explanations of domain-speci ¢ concepts,
other API usage examples. One example of this is the work of Moreno.g78], which
retrieves usage examples that show how to use a speci ¢ method.

Provide a uni ed and intuitive query syntaile observed that users are not always formulating
queries in the way that we would expect, perhaps because they are used to traditional search
engines that are more robust to noisy inputs and designed for keyword-based search. The
NL2Code generation model we experimented with in this study was trained on natural
language queries that are not only complete English sentences, but also include references to
variables or literals involved with an intent, specially delimited by dedicated syntax (grave
accents). As our respondents commented in the post-test survey, getting used to formulating
queries this way takes some practice. Future research should consider not only what is the
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most natural way for users to describe their intent using natural language, but also how
to provide a uni ed query syntax for both code generation and code retrieval, to minimize
confusion. Robust semantic parsing techniqu8sdg may also help with interpreting ill-
speci ed user queries.

Provide dialogue-based query capabibiglogue-based querying could allow users to re ne
their natural language intents until they are su ciently precise for the underlying models to
con dently provide some results. Future systems may reference work on query reformulation
in information retrieval, where the user queries are re ned to improve retrieval results both
for standard information retrieval 7] and code retrieval 39, 45. In addition, in the NLP
community there have been notable advancements recently in interactive semantic pars-
ing [51, 119, i.e, soliciting user input when dealing with missing information or ambiguity
while processing the initial natural language query, which could be of use as well.

Consider new paradigms of evaluation for code generation and retrieval systegedog data,
such as the ones we collected here, is arguably very informative and useful for researchers
looking to evaluate NL2Code systems. However, compared to automated metrics such as
BLEU, such data is much less readily available. We argue that such data is worth collecting
even if only in small quantities. For example, with little but high quality data, one could still
train a reranker [L29 to try to select the outputs that a human user selected; if the predictive
power exceeds that of BLEU alone, then the trained reranker could be used to automatically
evaluate the quality of the generated or retrieved code more realistically than by using BLEU.

9 RELATED WORK

Finally, we more extensively discuss how this work ts in the landscape of the many other related
works in the area.

9.1 NL2Code Generation

While we took a particular approach to code generation, there are a wide variety of other options.
Researchers have proposed that natural language dialogue could be a new form of human-computer
interaction since nearly the advent of modern compute2§[35 44, 7€. The bulk of prior work

either targeted domain-speci c languages (DSLs), or focused on task-speci ¢ code generation for
general-purpose languages, where more progress could be made given the relatively constrained
vocabulary and output code space. Examples include generating formatted input le parsers [63];
structured, idiomatic sequences of API cal@f]; regular expressionsd0, 74, 9(; string manipula-

tion DSL programs 10Q; card implementations for trading card game&8q; and solutions to the
simplest of programming competition-style problems [10].

With the recent boom of neural networks and deep learning in natural language processing,
generating arbitrary code in a general-purpose languafjgd 124 are becoming more feasible.
Some have been trained on both o cial APl documentation and Stack Over ow questions and
answers [L17. There are also similar systerfsable to generate class member functions given
natural language descriptions of intent and the programmatic context provided by the rest of the
class 9, and to generate the API call sequence in a Jupyter Notebook code cell given the natural
language and code history up to that particular cell [1].

35This is, of course, among the many other use cases for neural network models of code and natural language such as code
summarization 48 121, or embedding models that represent programming languages together with natural langudges [
Allamanis et al. [3] provide a comprehensive survey of the use cases of machine learning models in this area.
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9.2 NL2Code Retrieval

Code retrieval has similarly seen a wide variety of approaches. The simplest way to perform
retrieval is to start with existing information retrieval models designed for natural language search,
and adapt them speci cally for the source code domain through query reformulation or other
methods B9 45 52 71,113 115. Other research works utilize deep learning modefs 37, 47, 4§

to train a relevance model between natural language queries and corresponding code snippets. It is
also possible to exploit code annotations to generate additional information to help improve code
retrieval performance 12(Q or extracted abstract programming patterns and associated natural
language keywords for more content-based code seab¢h Many of the models achieve good
performance on human annotated relevance benchmark datasets between natural language and
code snippets. Practically, however, many developers simply rely on generic natural-language
search engines like Google to nd appropriate code snippets by rst locating pages that contain
code snippets through natural language querid94 on programming QA websites like Stack
Over ow.

9.3 Evaluation of NL2Code Methods

In order to evaluate whether NL2Code methods are succeeding, the most common way is to create
a reference program that indeed implements the desired functionality, and measure the similarity
of the generated program to this reference program. Because deciding whether two programs are
equivalent is, in the general case, undecidalll@], alternative means are necessary. For code
generation in limited domains, this is often done by creating a small number of input-output
examples and making sure that the generated program returns the same values as the reference
program over these testdp 59 114 118 126 13(Q. However, when scaling to broader domains,
creating a thorough and comprehensive suite of test cases over programs that have a wide variety
of assumptions about the input and output data formats is not trivial.

As a result, much research work on code generation and retrieval take a di erent tack. Specif-
ically, many code generation method$, 49 117 123 aim to directly compare generated code
snippets against ground truth snippets, using token sequence comparison metrics borrowed from
machine translation tasks, such as BLEU sc@®¥.[However, many code snippets are equivalent
in functionality but di er quite largely in terms of token sequences, or di er only slightly in token
sequence but greatly in functionality, and thus BLEU is an imperfect metric of correctness of a
source code shippet [110].

Code retrieval, on the other hand, is the task of retrieving relevant code given a natural language
query, that is related to other information retrieval tasks. Since code retrieval is often used to search
for vague concepts and ideas, human-annotated relevance annotations are needed for evaluation.
The common methods used in research woZ[47, 121 compare the retrieved code shippet
candidates given a natural language query, with a human annotated list of code snippet relevance,
using common automatic information retrieval metrics like NDCG, MRR, €t§ The drawback of
this evaluation method is that the cost of retrieval relevance annotation is high, and often requires
experts in the speci c area. Also, since the candidate lists are usually long, only a few unique
natural language queries could be annotated. For example, one of the most recent large scale code
search challenge CodeSearchN&T][contains only 99 unique natural language queries, along with
their corresponding code snippet relevance expert annotations, leading to smaller coverage of real
world development scenarios in evaluation.

Regardless of the automatic metrics above, in the end our nal goal is to help developers in their
task of writing code. This paper lIs the gap of the fundamental question of whether these methods
will be useful within the developer work ow.
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9.4 In-IDE Plugins

Similarly, many research works on deploying plugins inside IDEs to help developers have been
performed. Both Ponzanelli et.gP91] and Ponzanelli et a[92] focus on reducing context switching

in IDE by incorporating Stack Over ow, by using the context in the IDE to automatically retrieve
pertinent discussions from Stack Over ow. Subramanian effaD9]proposes a plugin to enhance
traditional APl documentation with up-to-date source code examples. Rahman aneRdsnd Liu

et al. [70]designs the plugin to help developers nd solutions on the Internet to program exceptions
and errors. Following the similar route, Brandt et §16] studies opportunistic programming where
programmers leverage online resources with a range of intentions, including the assistance that
could be accessed from inside the IDE.

Besides plugin developed to reduce context-switching to other resources in developer work ows,
Amann et al [5] focus on collecting data of various developer activities from inside the IDE that
fuel empirical research on the area [94].

This paper proposes an in-IDE plugin that incorporates code generation in addition to code
retrieval to test the user experience in the real development work ow. In the meantime it also
collects ne-grained user activities interacting with the plugin as well as editing the code snippet
candidates, to provide public data for future work.

9.5 End-User Development

The direction of exploring using natural language intents to generate code snippets is closely
related to end-user developmer ], which allows end-users (people who are not professional
software developers) to program computers. Cypher e{24] is among the rst work that enables
end-user to program by demonstration.

Traditionally, programming has been performed by software developers who write code directly
in programming languages for the majority of functionality they wish to implement. However,
acquiring the requisite knowledge to perform this task requires time-consuming training and
practice, and even for skilled programmers, writing programs requires a great amount of time and
e ort. To this end, there have been many recent developments on no-code or low-code software
development platforms that allow both programmers and non-programmers to develop in modalities
of interaction other than codeJ05. Some examples include visual programming languages such as
Scratch [ that o ers a building-block style graphical user interface to implement logic. In speci ¢
domains such as user interface design and prototyping, recent advances in deep learning models
also enable developers to sketch the user interface visually and then automatically generates user
interface code with the sketch [14], or using existing screenshots [87].

Besides visual no-code or low-code programming interfaces, there has also been much progress
on program synthesis]2 29 31, 108, which uses input-output examples, logic sketches, etc. to
automatically generate functions, with some recent advances that use machine learning ma@els [
21, 27, 106]. Some work also generate programs from easier-to-write pseudo-code [59, 129].

There are other work in the area. Barman et fil1], Chasins et al[19, 20] make web automation
accessible to non-coders through programming by demonstration, while Li.g64) 65 66] auto-
mates mobile applications with multimodal inputs including demonstration and natural language
intents. Head et al[43] combines teacher expertise with data-driven program synthesis techniques
to learn bug- xing code transformations in classroom scenarios. Head g#dl] helps users extract
executable, simpli ed code from existing code. Ko and Myg5s, 56] provides a debugging inter-
face for asking questions about program behavior. Myers and Sti@@fdiscusses API designers
should consider usability as a step towards enabling end-user programming. Kery [&33| Kery
and Myers[54] enable data scientists to explore data easily with exploratory programming. Our
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paper's plugin of using both state-of-the-art code generation and code retrieval to provide more
natural programming experience to developers, with the potential future of enabling end-user
programming, is related to Myers et al. [81] that envisions natural language programming.

9.6 Code Completion

Many developers use Integrated Development Environments (IDEs) as a convenient solution to
help with many aspects during development. Most importantly, many developers actively rely
on intelligent code-completion aid like IntelliSen¥&or Visual Studio p, 94 to help developers

learn more about the code, keep track of the parameters, and add calls to properties and methods
with only a few keystrokes. Many of intelligent code-completion tools also consider the current
code context where the developer is editing. With the recent advances in machine learning and
deep learning, example tools like IntelliCotidor Visual Studio, Codot® and TabNiné® present
Al-assisted code-suggestion and code-completion based on the current source code context, learned
from abundant amounts of projects over the Internet. The scope of our paper is to investigate
generating or retrieving code using natural language queries, rather than based on the context of
the current source code.

10 CONCLUSION

In this paper, we performed an extensive user study of in-IDE code generation and retrieval,
developing an experimental harness and framework for analysis. This demonstrated challenges
and limitations in the current state of both code generation and code retrieval; results were mixed
with regards to the impact on the developer work ow, including time e ciency, code correctness
and code quality. However, there was also promise: developers subjectively enjoyed the experience
of using in-IDE developer management tools, and provided several concrete areas for improvement.
We believe that these results will spur future, targeted development in productive directions for
code generation and retrieval models.
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A USER STUDY ENVIRONMENT DESIGN

To control the user study's development environment for di erent users as much as possible, and
to enable data collection and activity recording outside the IDE (e.g. web browsing activity during
the development), we design a complete virtual machine-based environment for users to access
remotely and perform the user study on. We build the virtual machine based on a lot of open
source software, including Ubuntu 18.04 operating systéwith XFCE 4.1 desktop environmefit.

The virtual machine software is VirtualBox 6.1.49and we use Vagrant softwaféfor automatic

virtual machine provisioning.

Inside the Linux virtual machine, we install and con gure a set of programs for data collection

and work ow control during the user study:

(1) Python environment. Python 3.84is installed inside the VM, alongside with pip package
manager and several commonly used Python packages for the user study tasks. The user is
free to install any additional packages they need during the development.

(2) IDE with plugin. PyCharm Community Edition 2020.1, with the plugin described in Section 3
is installed. This provides consistent Python development environment for the user study
and the testing of the code generation and retrieval. The plugin also handles various data
collection processes inside the IDE.

(3) Man-in-the-middle proxy. We installmitmproxy #®in the VM, along with our customized
script sending logs back to our server. This infrastructure enables interception and data
collection of both HTTP and secured HTTPS requests. With this we can collect users'
complete web browsing activities during the user study.

(4) Web browser. We install Firefox browsef® con gured to use the proxy mentioned above so
that all users' browsing activities could be logged for analysis.

(5) Keylogger. We develop a program that runs in the background during the user study, and
logs all the user's keystrokes along with the timestamps to our server. With the keylogger
we can collect data outside the IDE about the users' activities. This data is useful for mining
and analyzing developer activity patterns in terms of keyboard operations, for example copy
and pasting shortcuts.

(6) User study control scripts. We provide users a handful of scripts for easy and fully au-
tomatic retrieval, start and submission of the tasks. The scripts allow user to check their
completion status of the whole study, as well as to pause and resume during a task for a
break. All the user's task start, pause, resume, and submission events are logged so that the
completion time of each task for the user could be calculated.

B PRE-TEST SURVEY DETAILS

For each of the prospective participants, we asked them about two parts of the information in
a pre-study survey, apart from personal information for contact purposes. The rstis regarding
programming experience, used to determine if the participants have enough expertise in Python as
well as the categories of tasks that we designed. The questions are:

(1) Which of the following best describes your current career status: Student (computer science),
Student (other eld), Software Engineer, Data Scientist, Researcher, Other.

“Onttps://releases.ubuntu.com/18.04/
“Ihttps:/lwww.xfce.org/
“2https:/iwww.virtualbox.org/wiki/Downloads
“3https://www.vagrantup.com/
4https://www.python.org/
4Shttps://mitmproxy.org/
4Bhttps://www.mozilla.org/en-US/ refox/
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(a) Overall Python Experience (b) Basic Python (c) File

(d) oS (e) Web Scraping (f) Web Server & Client

(g) Data Analysis & Machine
Learning (h) Data Visualization

Fig. 8. The experience and expertise for overall Python programming and 7 specific areas that we design
di erent tasks for, from all the participants that completed the survey. 1 represents very inexperienced and 5
represents very experienced.

(2) How do you estimate your programming experience? (1: very inexperienced to 5: very
experienced)

(3) How experienced are you with Python? (1: very inexperienced to 5: very experienced)

(4) How experienced are you with each of the following tasks in Python? (1: very inexperienced
to 5: very experienced) Basic Python, File, OS, Web Scraping, Web Server & Client, Data
Analysis & Machine Learning, Data Visualization.

The second part of the information is about their development preferences, used to ask for their
preferences with IDE and assistive tools. The questions are:

(1) What editor/IDE do you use for Python projects? Vim, Emacs, VSCode, PyCharm, Jupyter
Notebook, Sublime Text, other.

(2) Do you use any assistive tools or plugins to improve your coding e ciency? Some examples
are code linting, type checking, snippet search tools, etc. If yes, what are they?

C PARTICIPANTS PROGRAMMING EXPERIENCE
The detailed participants' programming experience responded in the survey is shown in Figure 8.
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D POST-STUDY SURVEY DETAILS

After each task, we ask the following questions to all users (disregarding using the plugin or not)
about the task design, self-assessment, as well as the help needed during the process:

(1) How di cult did you feel about the task? (1: very easy to 5: very hard)

(2) How would you evaluate your performance on the task? (1: very bad to 5: very good)

(3) How often did you need to look for help during the task, including web search, looking up
API references, etc.? (1: not at all to 5: very often)

For users that completed the current task with plugin enabled, the following additional questions
about the plugin user experience are asked:

(1) How do you think the plugin impacted your e ciency timewise, if at all? (1: hindered
signi cantly, to 3: neither hindered nor helped, to 5: helped signi cantly)

(2) How do you think the plugin impacted your quality of life, with respect to ease of coding,
concentration, etc., if at all? (1: hindered signi cantly, to 3: neither hindered nor helped, to 5:
helped signi cantly)

After all assigned tasks are completed for the user, we ask them to complete a form about
the overall experience with the user study and the evaluation of the plugin, as well as soliciting
comments and suggestions.

(1) What did you think of the tasks assigned to you in general?

(2) Overall, how was your experience using this plugin? (1: very bad to 5: very good)

(3) What do you think worked well, compared with your previous ways to solve problems during
programming?

(4) What do you think should be improved, compared with your previous ways to solve problems
during programming?

(5) Do you have any other suggestions/comments for the plugin?

E PLUGIN EFFECT ON CODE COMPLEXITY METRICS

We also analyze the plugin's e ect on code complexity metrics, following the same methods
used in Section 5. We measure two standard proxies for code complexity of the Python programs
produced by our study participants in each of their assigned tasks,the number of source lines

of code (SLOC) and McCabe's cyclomatic complexity (CC), a measure of the number of linearly
independent paths through a program's source co@gjin real programs, CC depends a lot on

the if -statements, as well as conditional loops, and whether these are nested. The two measures
tend to be correlated, but not strongly enough to conclude that CC is redundant with SL&C [

We use the open-source library Radbrio calculate CC.

One could expect that code produced by our NL2Code plugin may be more idiomatic (possibly
shorter and less complex) than code written by the participants themselves.

Figure 9 shows the distributions of CC values across tasks and conditions. Figure 10 shows the
distributions of SLOC values across tasks and conditions.

Table 8 summarizes our default speci cation mixed-e ects regressions with CC and SLOC
variables included; the models with our second speci cation (de-meaned task experience) are
shown in Appendix G. The models t the data reasonably welg (= 50%or SLOC, 2 = 27%for
CC).

Analyzing the models we make the following observations. There is no statistically signi cant
di erence between the two conditions in cyclomatic complexity values (model (4)). That is, the

4Thttps://github.com/rubik/radon
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Fig. 9. Distributions of cyclomatic complexity values across tasks and conditions. The horizontal do ed lines
represent 25% and 75% quartiles, and the dashed lines represent medians.

Fig. 10. Distributions of SLOC values across tasks and conditions. The horizontal do ed lines represent 25%
and 75% quartiles, and the dashed lines represent medians.

code written by users in the plugin condition appears statistically indistinguishably as correct and
as complex from the code written by users in the control group.

We note a small e ect of using the plugin on code length (model (3)). On average, the code
written by users in the plugin condition is ~4 source lines of code longer than the code written
by users without using the plugin. However, this e ect is quite small, smaller than the standard
deviation of the randomnuser intercept (~6 source lines of code).

F NL2CODE PLUGIN QUERY SYNTAX

For the best results from the code generation model, we also instruct the users to write queries as
expected by the model with the following rules:

Quote variable names in the query with grave accent marks: ... variable_name ...

Quote string literals with regular quotation marks: ... Hello World! ...

Example query 1: open a le your le.txt in write mode.

Example query 2: lowercase a string text and remove non-alphanumeric characters aside
from space.
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